

Data Use in Highly Migratory Species (Gulf of Mexico and Atlantic) Shark Stock Assessments

SEFSC PROGRAM REVIEW

June 2013

Management area

Fisheries

(39 species in FMP; of the 20 non-prohibited species (11 large coastal sharks, 4 small coastal sharks and 5 pelagic sharks), ~50% have been formally assessed to date)

- Recreational fisheries of similar magnitude to commercial fisheries for most large coastal sharks
- Commercial discards (shrimp trawl fishery main source of removals for 3 of the 4 small coastal sharks)
- Main driver of directed commercial fishery was shark fin market, but it has been greatly reduced in recent years due to quota reductions and other management measures

Data: Generally "Data Poor"

- Fishery Statistics
 - Commercial landings
 - Recreational catches
 - Commercial discards (e.g., shrimp bycatch)
 - Limited size composition
 - No age composition
 - CPUE (standardized indices of abundance)
- Fishery-independent surveys
 - Size composition
 - Relative abundance indices

Stock Assessment Models Used

- There has been an evolution of methods as data became increasingly available
- Model used is dependent on data availability
- Initially only production models used
- Followed by increasingly sophisticated production models (consideration of both observation and process error models) and delay difference models
- Most stocks assessed more recently with age-structured production models
- Catch-free age-structured production model used in some cases (e.g., dusky shark)
- Other data-poor methods (e.g., Ecological Risk Assessments, Demographic Analyses, Analytical Reference Points) also applied but have not been used formally for management by HMS in USA

Evolution of Stock Assessment Models Used

Surplus Production Models

Delay-difference Models

Age-structured Production Models

- Catch
- CPUE time series
- Catch
- CPUE time series
- Stock-recruitment, survival, and growth
- Lag time between pupping and recruitment

- Catch by gear type
- CPUE time series
- Gear selectivity parameters
- Biological parameters
- Natural mortality at age
- Maximum age
- Age at maturity
- Sex ratio at birth
- Number of pups at age
- Proportion of reproductively active females at age
- Length-weight relationships
- -Von Bertalanffy growth parameters

Complexity
Data requirements
Estimable parameters

Shark Stock Assessment Models – Important Data

- Catches (total removals) each year
 - Accurate accounting of all fish landed and discarded dead; also (more recently) those that may die after being released alive
- Indices of Abundance
 - Track changes in stock abundance through time
 - Ideally cover full range of stock and long time period
 - Preferably derived from Fishery-Independent (FI) data to minimize number of factors that may affect indices
- Life History Information
 - Measures of maturity rates and reproductive output
 - Growth curves, length and weight at age, length-weight conversions, etc.
 - Natural mortality rates (estimated through life-history invariant methods)

Shark Stock Assessment Models – Important Data

- Length Samples
 - From commercial (usually limited) or recreational (very limited) fisheries
 - Best length information comes from observer programs (typically, bottomlongline shark observer program)
 - Length samples also available for the different F-I indices (best) and F-D indices

Available Fishery-Dependent Statistics

- Landings
- Dead discards
- Length compositions
- CPUE (standardized indices of abundance)

Commercial Landings (typically early 1990s-present)

- Almost census-like
- But very sketchy prior to early 1990s
- Often requires reconstruction to year when stock is assumed to be in "virgin" conditions based on "expert" judgment
- Geographically, state of landing is available; location of capture available from coastal fishery logbook data; but stock assessment models are not geographically explicit

Commercial Landings by gear (typically early 1990s-present)

Example: commercial gear composition for blacknose shark stock in SA

Commercial Landings area of capture

<u>Example:</u> area of capture for blacktip shark stock in GOM (from Costal Fishery Logbook)

Recreational Landings (1981-present)

- Are estimates
- From three surveys: MRFSS (now MRIP), Headboat, and TXPWD; MRFSS typically accounts for majority of catches
- Use A+B1 (animals landed and discarded dead or used for bait); more recently also account for B2s (animals released alive) that may die (based on very limited post-release survival estimates for a few species)
- Same caveats as reported for other species of fish (imprecision/bias)
- Mis-identification issues likely important for some species of sharks
- As for commercial catches, sometimes also requires reconstruction to year when stock is assumed to be in "virgin" conditions based on "expert" judgment
- Geographically, state of landing is available; location fished is selfreported

Recreational Landings (1981-present)

Example: Catches (A+B1) of blacktip shark in the GOM

(from the three surveys)

Commercial discards

- Are estimates
- Quality of information available to generate estimates is variable, but generally low:
- Very limited observations with expansion factors to generate total estimates (e.g., menhaden fishery discards or Mexican catches of "US" blacktip sharks in the GOM)
- Often involves some crude assumptions (expert opinion)
- Even when formally estimated, based on few observations:
- Shrimp fishery discards (e.g., GOM blacknose, Atlantic sharpnose, and bonnethead sharks)
- Bottom longline discards (based on logbooks and observer data; use self-reported effort to expand to total numbers)
- Magnitude of dead discards can range from insignificant to one driving the catches

Commercial discards

Example: Catch streams for Atlantic sharpnose shark

Atlantic sharpnose shark (GOM+ATL)

Incorporation of uncertainty in catches

- Assessments tend to give more weight to the catch series ("fit" better than indices)
- Low and high catch scenarios are constructed to account for uncertainty in the data streams:
 - Commercial landings are in weight but are transformed into numbers through average weights obtained from lengths recorded in the observer program(s): 95% CIs of those predicted weights are used to generate low and high landings in numbers
 - Recreational catches (A+B1, in numbers): 95% CIs of those estimates are also used to generate low and high catches in numbers
 - Shrimp discard estimates incorporate CIs
 - Other ad-hoc methods are used to generate low and high scenarios for other data streams (e.g., menhaden fishery discards, Mexican catches)

Low and high catches

<u>Examples:</u> 95% CIs of average weights for sandbar sharks from Bottom-Longline Observer Program (left); 95% CIs of A+B1 catches of sandbar sharks from MRFSS (right)

Low and high catches

Example: Low, base, and high catch scenarios for GOM blacktip sharks

Blacktip shark (GOM)

Size Composition of Landings and Discards

- Very few samples from commercial fisheries:
 - Measurements (length) come from observer programs (Bottom Longline, Pelagic Longline, and (Drift) Gillnet observer programs)
- Sample size from recreational surveys generally low
- Sample size from shrimp fishery observer program very low too
- No routine age samples available
- Selectivities are fitted externally to the model:
 - First, length samples are combined with original age and growth studies to develop age-length keys
 - The age-length keys are then used to obtain age compositions based on length compositions
 - Selectivity curves are then fitted to the age compositions externally to the model and later imputed into the model

Length Composition of Landings and Discards

Example: Length compositions of sandbar sharks from the Bottom-Longline Observer Program

Age-length key

Example: Age-length key for GOM blacktip sharks

Length and age compositions

Example: Some length and age compositions for sandbar sharks

Selectivities

Example: Selectivities fitted to age composition of sandbar sharks that were obtained from lengths through an age-length key

Fishery-Dependent CPUE (standardized indices of abundance)

Most common ones are:

- Bottom longline observer program (directed shark fishery; 1994-)
- (Drift) gillnet observer program (1993-)
- Pelagic longline observer program (1992-)
- Large Pelagic Survey (LPS; recreational index for pelagic species; 1986-)
- Observer program-based indices generally preferred to corresponding indices derived from logbooks
- MRFSS and recreational indices generally not used because of species identification and other issues
- Generally good spatial coverage but subject to changes in regulations and fishing power (high potential for process error)

Fishery-Independent CPUE (standardized indices of abundance)

Most common ones are:

- Bottom longline shark survey (1995-)
- GOM shark pupping and nursery area gillnet surveys (GULFSPAN; several states; varying time coverage)
- SEAMAP SA coastal trawl survey (1989-)
- SEAMAP GOM groundfish trawl surveys (summer: 1982-; fall: 1972-)
- Northeast longline shark survey (not annual; 1996-)
- VIMS bottom longline shark survey (1973-)
- UNC bottom longline shark survey (1973-)
- SEAMAP-GOM coastal inshore bottom longline shark survey (several states; varying time coverage)
- Other small-scale surveys and state-run or partner-run surveys
- Generally more limited spatial coverage and fewer observations than fishery-dependent indices, but less subject to changes in regulations and methodology
- Some with good temporal coverage (e.g., VIMS and UNC)
- Have recently started pooling small-scale indices with same methods and close geographic locations (e.g., Gulfspan, SEAMAP-GOM inshore longline surveys)
- Have also recently used single hierarchical index to account for process error

Combining multiple local indices

Example: Combining several F-I indices for GOM blacktip sharks

Indices

Example: F-D and F-I indices for sandbar sharks

Indices

Example: Indices for sandbar sharks

Life history information: issues

- Very few species with validated ages
- New studies typically result in different estimates of longevity and ages at maturity
- Length of reproductive cycle for several species unclear or variable
- Natural mortality estimated through "life history invariant" methods

Catch (landings and discards) data

- Commercial landings well represented (near census) but only available form early 1990s
- Recreational catches are estimated and suffer from small sample sizes (lengths) and species identification problems in some cases
- Bycatch (discards) estimated, also suffer from small sample sizes due to limited observer coverage and historically low priority for sharks
- Sex recorded in observer programs and most fishery-independent surveys but not in most other fishery-dependent data collection programs

CPUE (Indices of relative abundance)

- Logbook-based indices more precise, better spatial coverage, show lower interannual variation, but are less reliable than observer-based indices (lower sample sizes, higher interannual variation, but better species ID)
- Different indices often show conflicting trends
- The model assumes they track true relative abundance of the stock

Biological Information

Age information:

- No catch at age available
- Limited length compositions available
- Limited age and growth studies
- Very few age validation studies

Reproductive information:

- Litter size generally well known
- Reproductive periodicity for several species is in question

Stock, Spatial and other Information

- Stock structure information inexistent or in question for several species
- Tagging information limited
- Movement patterns still largely unknown for most species

